Accelerated mineralization of textile wastewater under 222 nm irradiation from Kr/Cl2 excilamp: an environmentally friendly and energy efficient approach

Author:

Ahlawat Kiran,Jangra Ramavtar,Prakash Ram

Abstract

AbstractThe textile dyeing and manufacturing industry is the major producer of significant amounts of wastewater that contain persistent substances such as azo dyes that require adequate remediation measures. Far ultraviolet at 222 nm light may provide an advantage for contaminants degradation as compared to conventional UV sources (254 nm). In this paper, the degradation of reactive black 5 (RB5) in artificial wastewater has been performed using a 222 nm Kr/Cl2 excimer source under direct photolysis and an advanced oxidation process using TiO2/H2O2. The solution pH, catalyst concentration, 222 nm intensity, initial concentration of dye, and addition of H2O2 influence the degradation rate constant. The molar absorption coefficient, quantum yield of RB5 at 222 nm and the electrical energy per order (EEO) from different treatment methods have been reported. RB5 shows 1.26 times higher molar absorption at 222 nm than at 254 nm. The EEO for excimer-222/H2O2 ($$\sim$$ 13 kWh/m3) is five times lower than that of the excimer-222/TiO2 process, which makes the process energy efficient. The degradation of wastewater has been carried out at three distinct pH values (2, 6, and 10), and the pH level of 10 exhibited the highest degree of degradation. The degradation rate in the alkaline medium is 8.27 and 2.05 times higher than in the acidic or ambient medium. Since textile effluent is highly alkaline, this result is significant, as no neutralization of the wastewater is required, and direct treatment is possible. A possible degradation pathway has been established based on Fourier transform infrared spectroscopy (FTIR) and high resolution mass spectroscopy (HRMS) analysis. The phytotoxicity of the treated wastewater has also been evaluated for its suitability for reuse in agriculture. The study reveals that the excimer-222/H2O2 treated wastewater significantly enhanced the germination percentage of Raphanus sativus seed (97%) compared to dye wastewater-grown seeds (75%). This work offers crucial information for future studies on the direct and indirect photolysis of azo dyes, as well as insight into the process of RB5 degradation under Kr/Cl2 excimer radiation.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3