Additional flight delays and magnetospheric–ionospheric disturbances during solar storms

Author:

Wang Y.,Xu X. H.,Wei F. S.,Feng X. S.,Bo M. H.,Tang H. W.,Wang D. S.,Bian L.,Wang B. Y.,Zhang W. Y.,Huang Y. S.,Li Z.,Guo J. P.,Zuo P. B.,Jiang C. W.,Xu X. J.,Zhou Z. L.,Zou P.

Abstract

AbstractAlthough the sun is really far away from us, some solar activities could still influence the performance and reliability of space-borne and ground-based technological systems on Earth. Those time-varying conditions in space caused by the sun are also called solar storm or space weather. It is known that aviation activities can be affected during solar storms, but the exact effects of space weather on aviation are still unclear. Especially how the flight delays, the top topic concerned by most people, will be affected by space weather has never been thoroughly researched. By analyzing huge amount of flight data (~ 4 × 106records), for the first time, we quantitatively investigate the flight delays during space weather events. It is found that compared to the quiet periods, the average arrival delay time and 30-min delay rate during space weather events are significantly increased by 81.34% and 21.45% respectively. The evident negative correlation between the yearly flight regularity rate and the yearly mean total sunspot number during 22 years also confirms such correlation. Further studies show that the flight delay time and delay rate will monotonically increase with the geomagnetic field fluctuations and ionospheric disturbances. These results indicate that the interferences in communication and navigation during space weather events may be the most probable reason accounting for the increased flight delays. The above analyses expand the traditional field of space weather research and could also provide us with brand new views for improving the flight delay predications.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3