Improving the robustness and stability of a machine learning model for breast cancer prognosis through the use of multi-modal classifiers

Author:

Arya Nikhilanand,Saha Sriparna,Mathur Archana,Saha Snehanshu

Abstract

AbstractBreast cancer is a deadly disease with a high mortality rate among PAN cancers. The advancements in biomedical information retrieval techniques have been beneficial in developing early prognosis and diagnosis systems for cancer patients. These systems provide the oncologist with plenty of information from several modalities to make the correct and feasible treatment plan for breast cancer patients and protect them from unnecessary therapies and their toxic side effects. The cancer patient’s related information can be collected using various modalities like clinical, copy number variation, DNA-methylation, microRNA sequencing, gene expression, and histopathological whole slide images. High dimensionality and heterogeneity in these modalities demand the development of some intelligent systems to understand related features to the prognosis and diagnosis of diseases and make correct predictions. In this work, we have studied some end-to-end systems having two main components : (a) dimensionality reduction techniques applied to original features from different modalities and (b) classification techniques applied to the fusion of reduced feature vectors from different modalities for automatic predictions of breast cancer patients into two categories: short-time and long-time survivors. Principal component analysis (PCA) and variational auto-encoders (VAEs) are used as the dimensionality reduction techniques, followed by support vector machines (SVM) or random forest as the machine learning classifiers. The study utilizes raw, PCA, and VAE extracted features of the TCGA-BRCA dataset from six different modalities as input to the machine learning classifiers. We conclude this study by suggesting that adding more modalities to the classifiers provides complementary information to the classifier and increases the stability and robustness of the classifiers. In this study, the multimodal classifiers have not been validated on primary data prospectively.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3