Author:
Garrido Marques Antonio,Rubinacci Simone,Malaspinas Anna-Sapfo,Delaneau Olivier,Sousa da Mota Bárbara
Abstract
AbstractLow-coverage imputation is becoming ever more present in ancient DNA (aDNA) studies. Imputation pipelines commonly used for present-day genomes have been shown to yield accurate results when applied to ancient genomes. However, post-mortem damage (PMD), in the form of C-to-T substitutions at the reads termini, and contamination with DNA from closely related species can potentially affect imputation performance in aDNA. In this study, we evaluated imputation performance (i) when using a genotype caller designed for aDNA, ATLAS, compared to bcftools, and (ii) when contamination is present. We evaluated imputation performance with principal component analyses and by calculating imputation error rates. With a particular focus on differently imputed sites, we found that using ATLAS prior to imputation substantially improved imputed genotypes for a very damaged ancient genome (42% PMD). Trimming the ends of the sequencing reads led to similar improvements in imputation accuracy. For the remaining genomes, ATLAS brought limited gains. Finally, to examine the effect of contamination on imputation, we added various amounts of reads from two present-day genomes to a previously downsampled high-coverage ancient genome. We observed that imputation accuracy drastically decreased for contamination rates above 5%. In conclusion, we recommend (i) accounting for PMD by either trimming sequencing reads or using a genotype caller such as ATLAS before imputing highly damaged genomes and (ii) only imputing genomes containing up to 5% of contamination.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
European Research Council
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献