Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition

Author:

Mekruksavanich Sakorn,Jitpattanakul Anuchit

Abstract

AbstractIn the field of machine intelligence and ubiquitous computing, there has been a growing interest in human activity recognition using wearable sensors. Over the past few decades, researchers have extensively explored learning-based methods to develop effective models for identifying human behaviors. Deep learning algorithms, known for their powerful feature extraction capabilities, have played a prominent role in this area. These algorithms can conveniently extract features that enable excellent recognition performance. However, many successful deep learning approaches have been built upon complex models with multiple hyperparameters. This paper examines the current research on human activity recognition using deep learning techniques and discusses appropriate recognition strategies. Initially, we employed multiple convolutional neural networks to determine an effective architecture for human activity recognition. Subsequently, we developed a hybrid convolutional neural network that incorporates a channel attention mechanism. This mechanism enables the network to capture deep spatio-temporal characteristics in a hierarchical manner and distinguish between different human movements in everyday life. Our investigations, using the UCI-HAR, WISDM, and IM-WSHA datasets, demonstrated that our proposed model, which includes cross-channel multi-size convolution transformations, outperformed previous deep learning architectures with accuracy rates of 98.92%, 98.80%, and 98.45% respectively. These results indicate that the suggested model surpasses state-of-the-art approaches in terms of overall accuracy, as supported by the research findings.

Funder

Thailand Science Research and Innovation Fund

University of Phayao

King Mongkut’s University of Technology North Bangkok

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3