Author:
Pinzek Simon,Gustschin Alex,Gustschin Nikolai,Viermetz Manuel,Pfeiffer Franz
Abstract
AbstractGrating-based X-ray imaging employs high aspect ratio absorption gratings to generate contrast induced by attenuating, phase-shifting, and small-angle scattering properties of the imaged object. The fabrication of the absorption gratings remains a crucial challenge of the method on its pathway to clinical applications. We explore a simple and fast centrifugal tungsten particle deposition process into silicon-etched grating templates, which has decisive advantages over conventional methods. For that, we use a bimodal tungsten particle suspension which is introduced into a custom designed grating holder and centrifuged at over 1000×g. Gratings with 45 µm period, 450 µm depth, and 170 mm × 38 mm active area are successfully processed reaching a homogeneous absorber filling. The effective absorbing tungsten thickness in the trenches is 207 µm resulting in a filling ratio of 46.6% compared to a voidless filling. The grating was tested in a Talbot–Lau interferometer designed for clinical X-ray dark-field computed tomography, where visibilities up to 33.6% at 60 kV were achieved.
Funder
European Research Council
Deutsche Forschungsgemeinschaft
Technische Universität München
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献