Author:
Chide Baptiste,Beyssac Olivier,Gauthier Michel,Benzerara Karim,Estève Imène,Boulliard Jean-Claude,Maurice Sylvestre,Wiens Roger C.
Abstract
AbstractThe SuperCam instrument suite onboard the Mars 2020 Perseverance rover uses the laser-induced breakdown spectroscopy (LIBS) technique to determine the elemental composition of rocks and soils of the Mars surface. It is associated with a microphone to retrieve the physical properties of the ablated targets when listening to the laser-induced acoustic signal. In this study, we report the monitoring of laser-induced mineral phase transitions in acoustic data. Sound data recorded during the laser ablation of hematite, goethite and diamond showed a sharp increase of the acoustic signal amplitude over the first laser shots. Analyses of the laser-induced craters with Raman spectroscopy and scanning electron microscopy indicate that both hematite and goethite have been transformed into magnetite and that diamond has been transformed into amorphous-like carbon over the first laser shots. It is shown that these transitions are the root cause of the increase in acoustic signal, likely due to a change in target’s physical properties as the material is transformed. These results give insights into the influence of the target’s optical and thermal properties over the acoustic signal. But most importantly, in the context of the Mars surface exploration with SuperCam, as this behavior occurs only for specific phases, it demonstrates that the microphone data may help discriminating mineral phases whereas LIBS data only have limited capabilities.
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献