Artificial liver support system therapy in acute-on-chronic hepatitis B liver failure: Classification and regression tree analysis

Author:

Huang Kaizhou,Ji Feiyang,Xie Zhongyang,Wu Daxian,Xu Xiaowei,Gao Hainv,Ouyang Xiaoxi,Xiao Lanlan,Zhou Menghao,Zhu Danhua,Li Lanjuan

Abstract

Abstract Artificial liver support systems (ALSS) are widely used to treat patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). The aims of the present study were to investigate the subgroups of patients with HBV-ACLF who may benefit from ALSS therapy, and the relevant patient-specific factors. 489 ALSS-treated HBV-ACLF patients were enrolled, and served as derivation and validation cohorts for classification and regression tree (CART) analysis. CART analysis identified three factors prognostic of survival: hepatic encephalopathy (HE), prothrombin time (PT), and total bilirubin (TBil) level; and two distinct risk groups: low (28-day mortality 10.2–39.5%) and high risk (63.8–91.1%). The CART model showed that patients lacking HE and with a PT ≤ 27.8 s and a TBil level ≤455 μmol/L experienced less 28-day mortality after ALSS therapy. For HBV-ACLF patients with HE and a PT > 27.8 s, mortality remained high after such therapy. Patients lacking HE with a PT ≤ 27.8 s and TBil level ≤ 455 μmol/L may benefit markedly from ALSS therapy. For HBV-ACLF patients at high risk, unnecessary ALSS therapy should be avoided. The CART model is a novel user-friendly tool for screening HBV-ACLF patient eligibility for ALSS therapy, and will aid clinicians via ACLF risk stratification and therapeutic guidance.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3