Monitoring of manufacturing process using bayesian EWMA control chart under ranked based sampling designs

Author:

Khan Imad,Noor-ul-Amin Muhammad,Khan Dost Muhammad,Ismail Emad A. A.,Sumelka Wojciech

Abstract

AbstractControl charts, including exponentially moving average (EWMA) , are valuable for efficiently detecting small to moderate shifts. This study introduces a Bayesian EWMA control chart that employs ranked set sampling (RSS) with known prior information and two distinct loss functions (LFs), the Square Error Loss function (SELF) and the Linex Loss function (LLF), for posterior and posterior predictive distributions. The chart's performance is assessed using average run length (ARL) and standard deviation of run length (SDRL) profiles, and it is compared to the Bayesian EWMA control chart based on simple random sampling (SRS). The results indicate that the proposed control chart detects small to moderate shifts more effectively. The application in semiconductor manufacturing provides concrete evidence that the Bayesian EWMA control chart, when implemented with RSS schemes, demonstrates a higher degree of sensitivity in detecting deviations from normal process behavior. Comparison to the Bayesian EWMA control chart using SRS, it exhibits a superior ability to identify and flag instances where the manufacturing process is going out of control. This heightened sensitivity is critical for promptly addressing and rectifying issues, which ultimately contributes to improved quality control in semiconductor production.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3