Emission of five OAM dispersive waves in dispersion-engineered double-ring core fiber

Author:

Geng Wenpu,Fang Yuxi,Bao Changjing,Pan Zhongqi,Yue Yang

Abstract

AbstractBeams carrying orbital angular momentum (OAM) have exhibited significant potential across various fields, such as metrology, image coding, and optical communications. High-performance broadband coherent OAM sources are critical to the operation of optical systems. The emission of dispersive waves facilitates the efficient transfer of energy to distant spectral domains while preserving the coherence among the generated frequency components. Light sources that maintain consistency over a wide range can increase the efficiency of optical communication systems and improve the measurement accuracy in imaging and metrology. In this work, we propose a germanium-doped double ring-core fiber for five OAM dispersive waves (DWs) generation. The OAM1,1 mode supported in the fiber exhibits three zero-dispersion wavelengths (ZDWs) located at 1275, 1720 and 2325 nm. When pumped under normal dispersion, the output spectrum undergoes broadening and exhibits five DWs, situated around 955, 1120, 1450, 2795 and 2965 nm, respectively. Concomitant with blue-shifted and red-shifted dispersive waves, the spectrum spans from 895 to 3050 nm with high coherence. The effect of the fiber and input pulse parameters on DWs generation, as well as the underlying dynamics of the dispersive wave generation process, are discussed. As expected, the number and location of DWs generated in the output spectrum have agreement with the prediction of the phase-matching condition. Overall, this multiple DWs generation method in the proposed fiber paves the way for developing efficient and coherent OAM light sources in fiber-based optical systems.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Shaanxi Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3