Distribution Optimization: An evolutionary algorithm to separate Gaussian mixtures

Author:

Lerch Florian,Ultsch Alfred,Lötsch JörnORCID

Abstract

AbstractFinding subgroups in biomedical data is a key task in biomedical research and precision medicine. Already one-dimensional data, such as many different readouts from cell experiments, preclinical or human laboratory experiments or clinical signs, often reveal a more complex distribution than a single mode. Gaussian mixtures play an important role in the multimodal distribution of one-dimensional data. However, although fitting of Gaussian mixture models (GMM) is often aimed at obtaining the separate modes composing the mixture, current technical implementations, often using the Expectation Maximization (EM) algorithm, are not optimized for this task. This occasionally results in poorly separated modes that are unsuitable for determining a distinguishable group structure in the data. Here, we introduce “Distribution Optimization” an evolutionary algorithm to GMM fitting that uses an adjustable error function that is based on chi-square statistics and the probability density. The algorithm can be directly targeted at the separation of the modes of the mixture by employing additional criterion for the degree by which single modes overlap. The obtained GMM fits were comparable with those obtained with classical EM based fits, except for data sets where the EM algorithm produced unsatisfactory results with overlapping Gaussian modes. There, the proposed algorithm successfully separated the modes, providing a basis for meaningful group separation while fitting the data satisfactorily. Through its optimization toward mode separation, the evolutionary algorithm proofed particularly suitable basis for group separation in multimodally distributed data, outperforming alternative EM based methods.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference24 articles.

1. Ameijeiras-Alonso, J., Crujeiras, R. M. & Rodríguez-Casal, A. Mode testing, critical bandwidth and excess mass. ArXiv e-prints (2016).

2. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B 39, 1–38 (1977).

3. Bishop, C. Pattern recognition and machine learning. (Springer, 2006).

4. Frühwirth-Schnatter, S. Finite Mixture and Markov Switching Models. (Springer New York, 2006).

5. Kim, D. K. & Jeremy, M. G. T. The Restricted EM Algorithm for Maximum Likelihood Estimation Under Linear Restrictions on the Parameters. Journal of the American Statistical Association 90, 708–716 (1995).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3