Uncertainty of chemical status in surface waters

Author:

Loga MałgorzataORCID,Przeździecki KarolORCID

Abstract

AbstractThis article addresses the issue of estimating Pom—the probability of misclassifying the chemical status confidence of a water body status assessment. The main concerns of the authors were chemical quality elements with concentrations in water bodies which are close to or even smaller than the limit of quantification (LOQ). Their values must be set to half of this limit to calculate the mean value. This procedure leads to very low standard deviation values and unrealistic values of Pom for chemical indicators. In turn, this may lead to the false conclusion that not only is the chemical status good but also that this status assessment is perfect. Therefore, for a more reliable calculation of Pom, the authors suggested a modified calculation in which the value of half the LOQ for calculating the mean value was kept, but zero as the concentration value for the standard deviation calculation was adopted. The proposed modification has been applied to the Hierarchical Approach procedure for Pom estimation of the chemical status of Polish rivers and lakes. The crucial finding is that current chemical status assessments may be incorrect in the case of approximately 25% of river water bodies and 30% of lake water bodies categorised as good, and 20% of both types of water bodies classified as below good.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference64 articles.

1. Directive 2000/60/EC (2000) of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy (2000).

2. Directive 2008/105/EC (2008) of the European Parliament and of the Council of 16 December 2008 on Environmental Quality Standards in the Field of Water Policy, Amending and Subsequently Repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and Amending Directive 2000/60/EC of the European Parliament and of the Council (2008).

3. Directive 2013/39/EU (2013) of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy (2013).

4. https://www.eea.europa.eu/themes/water/european-waters/water-quality-and-water-assessment/water-assessments (2020)

5. Kristensen, P., Whalley, C., & Klančnik, K. European Waters: Assessment of Status and Pressures 2018. (European Environment Agency, 2018).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3