Genetic and endosymbiotic diversity of Greek populations of Philaenus spumarius, Philaenus signatus and Neophilaenus campestris, vectors of Xylella fastidiosa

Author:

Kapantaidaki Despoina Ev.,Antonatos Spyridon,Evangelou Vasiliki,Papachristos Dimitrios P.,Milonas Panagiotis

Abstract

AbstractThe plant-pathogenic bacterium Xylella fastidiosa which causes significant diseases to various plant species worldwide, is exclusively transmitted by xylem sap-feeding insects. Given the fact that X. fastidiosa poses a serious potential threat for olive cultivation in Greece, the main aim of this study was to investigate the genetic variation of Greek populations of three spittlebug species (Philaenus spumarius, P. signatus and Neophilaenus campestris), by examining the molecular markers Cytochrome Oxidase I, cytochrome b and Internal Transcribed Spacer. Moreover, the infection status of the secondary endosymbionts Wolbachia, Arsenophonus, Hamiltonella, Cardinium and Rickettsia, among these populations, was determined. According to the results, the ITS2 region was the less polymorphic, while the analyzed fragments of COI and cytb genes, displayed high genetic diversity. The phylogenetic analysis placed the Greek populations of P. spumarius into the previously obtained Southwest clade in Europe. The analysis of the bacterial diversity revealed a diverse infection status. Rickettsia was the most predominant endosymbiont while Cardinium was totally absent from all examined populations. Philaenus spumarius harbored Rickettsia, Arsenophonus, Hamiltonella and Wolbachia, N. campestris carried Rickettsia, Hamiltonella and Wolbachia while P. signatus was infected only by Rickettsia. The results of this study will provide an important knowledge resource for understanding the population dynamics of vectors of X. fastidiosa with a view to formulate effective management strategies towards the bacterium.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference92 articles.

1. EFSA Plh Panel. Update of the Xylella spp. host plant database. EFSA J. 16(9), 5408 (2018).

2. Organization, E. P. P. EPPO Standards PM 7: Diagnostics PM7/24(4) - Xylella fastidiosa. Bull. OEPP/EPPO Bull. 49(2), 175–227 (2019).

3. Redak, R. A. et al. The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu. Rev. Entomol. 49, 243–270 (2004).

4. Saponari, M., Boscia, D., Nigro, F. & Martelli, G. P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J. Plant Pathol. 95, 668 (2013).

5. Cavalieri, V. et al. Transmission of the CODIRO strain of Xylella fastidiosa by different insect species. In Proceedings of XI European Congress of Entomology 144–145 (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3