Respiration monitoring in PACU using ventilation and gas exchange parameters

Author:

Kang Hee Yong,You Ann Hee,Kim Youngsoon,Jeong You Jeong,Jang Geuk Young,Oh Tong In,Kim Yongmin,Woo Eung Je

Abstract

AbstractThe importance of perioperative respiration monitoring is highlighted by high incidences of postoperative respiratory complications unrelated to the original disease. The objectives of this pilot study were to (1) simultaneously acquire respiration rate (RR), tidal volume (TV), minute ventilation (MV), SpO2 and PetCO2 from patients in post-anesthesia care unit (PACU) and (2) identify a practical continuous respiration monitoring method by analyzing the acquired data in terms of their ability and reliability in assessing a patient’s respiratory status. Thirteen non-intubated patients completed this observational study. A portable electrical impedance tomography (EIT) device was used to acquire RREIT, TV and MV, while PetCO2, RRCap and SpO2 were measured by a Capnostream35. Hypoventilation and respiratory events, e.g., apnea and hypopnea, could be detected reliably using RREIT, TV and MV. PetCO2 and SpO2 provided the gas exchange information, but were unable to detect hypoventilation in a timely fashion. Although SpO2 was stable, the sidestream capnography using the oronasal cannula was often unstable and produced fluctuating PetCO2 values. The coefficient of determination (R2) value between RREIT and RRCap was 0.65 with a percentage error of 52.5%. Based on our results, we identified RR, TV, MV and SpO2 as a set of respiratory parameters for robust continuous respiration monitoring of non-intubated patients. Such a respiration monitor with both ventilation and gas exchange parameters would be reliable and could be useful not only for respiration monitoring, but in making PACU discharge decisions and adjusting opioid dosage on general hospital floor. Future studies are needed to evaluate the potential clinical utility of such an integrated respiration monitor.

Funder

National Research Foundation of Korea

Ministry of Trade, Industry and Energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3