Author:
Maiga Omar,Deville Eric,Laval Jérome,Prinzhofer Alain,Diallo Aliou Boubacar
Abstract
AbstractIn today’s race to find ways to produce cheap and green hydrogen, the natural hydrogen wells in Bourakebougou offer a promising solution and are a good example of how H2 can be produced in the natural environment. Not only has one well been successfully exploited to generate electricity for the local village, but twenty-four other exploratory boreholes have also demonstrated the presence of natural H2 in the surrounding area. The Bourakebougou H2 field offers a unique opportunity for geoscientists to determine the key characteristics of natural hydrogen reservoirs. This paper presents the coring, logging, and geochemistry studies that were performed to better characterize the nature of the Bourakebougou H2-bearing reservoirs. The shallowest main reservoir, in which there is the highest content of H2, is made of dolomitic carbonate (Neoproterozoic cap carbonate). These carbonates are largely karstified and show a high degree of heterogeneity in porosity (0.21–14.32%). Based on the analysis of the drilling imagery of the carbonated reservoirs, the accumulation of hydrogen occurs in the karst (void) representing a secondary porosity in the rock matrix. Other reservoirs, especially the deepest ones, are porous sandstone rocks with much more homogeneous porosities (4.52–6.37%) compared to the massive carbonates. For the wells analysed, the neutron tool reacted in a specific way when there is the presence of hydrogen. Hence, it stands out as being the primary tool to detect the presence of natural hydrogen beyond simple gas logging. When comparing a H2 reservoir system to classical oil and gas reservoir systems, the results show that the hydrogen reservoir is a dynamic system that is progressively recharged in H2-rich gas at the production timescale.
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献