Author:
Mazaheri Hakimeh,Goli Salman,Nourollah Ali
Abstract
AbstractPath planning is one of the most critical issues in many related fields including UAVs. Many researchers have addressed this problem according to different conditions and limitations, but modelling the 3-D space and routing with an evolutional algorithm in such spaces is an open issue. So, in this paper, we first, introduce a method to grids the environment using geometrical shapes. This can reduce the random states of cell decomposition and increases the computational speed. We then propose an effective routing algorithm based on the butterfly optimization algorithm (BOA). It can simultaneously optimize multiple path planning objectives. It uses an objective function to compute the shortest path, based on obstacle avoidance and the UAV’s operational power minimization. A novel concept, the intelligent throwing agent, used in this algorithm prevents getting stuck in local optima and increases the network coverage in path planning. The throwing agent prevents the collision of the UAV with the obstacles using geometrical techniques and contour lines. The simulation results show that BOA has the least and second-least cost in best-case and worst-case scenarios in comparison with ant colony and particle swarm. Its run time and the optimal value of the fitting function are also better than the two other algorithms.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献