Forecasting admissions in psychiatric hospitals before and during Covid-19: a retrospective study with routine data

Author:

Wolff J.ORCID,Klimke A.,Marschollek M.,Kacprowski T.

Abstract

AbstractThe COVID-19 pandemic has strong effects on most health care systems. Forecasting of admissions can help for the efficient organisation of hospital care. We aimed to forecast the number of admissions to psychiatric hospitals before and during the COVID-19 pandemic and we compared the performance of machine learning models and time series models. This would eventually allow to support timely resource allocation for optimal treatment of patients. We used admission data from 9 psychiatric hospitals in Germany between 2017 and 2020. We compared machine learning models with time series models in weekly, monthly and yearly forecasting before and during the COVID-19 pandemic. A total of 90,686 admissions were analysed. The models explained up to 90% of variance in hospital admissions in 2019 and 75% in 2020 with the effects of the COVID-19 pandemic. The best models substantially outperformed a one-step seasonal naïve forecast (seasonal mean absolute scaled error (sMASE) 2019: 0.59, 2020: 0.76). The best model in 2019 was a machine learning model (elastic net, mean absolute error (MAE): 7.25). The best model in 2020 was a time series model (exponential smoothing state space model with Box-Cox transformation, ARMA errors and trend and seasonal components, MAE: 10.44). Models forecasting admissions one week in advance did not perform better than monthly and yearly models in 2019 but they did in 2020. The most important features for the machine learning models were calendrical variables. Model performance did not vary much between different modelling approaches before the COVID-19 pandemic and established forecasts were substantially better than one-step seasonal naïve forecasts. However, weekly time series models adjusted quicker to the COVID-19 related shock effects. In practice, multiple individual forecast horizons could be used simultaneously, such as a yearly model to achieve early forecasts for a long planning period and weekly models to adjust quicker to sudden changes.

Funder

Medizinische Hochschule Hannover (MHH)

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting hospital discharges for respiratory conditions in Costa Rica using climate and pollution data;Mathematical Biosciences and Engineering;2024

2. Forecasting Hospital Mental-Health Admissions with a Novel Hybrid Deep Learning Architecture;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

3. Forecasting of Outpatient Hospital Visits using A Bidirectional Long Short-Term Memory Model;2023 8th International Conference on Business and Industrial Research (ICBIR);2023-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3