Novel dual-function GC/MS aided ultrasound-assisted hydrodistillation for the valorization of Citrus sinensis by-products: phytochemical analysis and anti-bacterial activities

Author:

Abdel Samad Roudaina,El Darra Nada,Al Khatib Alissar,Chacra Hadi Abou,Jammoul Adla,Raafat Karim

Abstract

AbstractA huge-amount of citrus by-products is being wasted every-year. There is a high-need to utilize these by-products with high-efficiency. This study focuses on the essential oil (EO) isolation from the zest of Citrus sinensis (CS) by-products, using a novel dual-function gas-chromatography mass-spectrometry optimized ultrasound-assisted hydrodistillation-prototype (DF-GC/MS-HUS). The CS-EO was GC-analyzed by MS-detector (GC/MS) and optimized by flame-ionization detector (GC/FID). Ultrasound-assisted hydrodistillation (HUS) had a dual-function in CS-EO isolation by utilizing an adequate-energy to break-open the oil-containing glands, and by functioning-as a dispersing-agent to emulsify the organic-phase. The most effective DF-GC/MS-HUS optimized-conditions were isolation under 38 °C and 10 min of 28.9 Hz sonication. The main-components of CS-EO were limonene, β-myrcene, and α-pinene (81.32%, 7.55%, and 4.20%) in prototype, compared to (60.23%, 5.33%, and 2.10%) in the conventional-method, respectively. The prototype CS-EO showed natural antibacterial-potentials, and inhibited the bio-film formation by Staphylococcus aureus, Listeria monocytogenes, and E. coli more-potent than the conventional-method. Compared to conventional-method, the prototype-method decreased the isolation-time by 83.3%, lowered energy-consumption, without carbon-dioxide production, by reducing isolation-temperatures by more-than half, which protected the thermolabile-components, and increased the quantity by 2514-folds, and improved the quality of CE-EO composition and its antibacterial-potentials. Therefore, the DF-GC/MS-HUS prototype method is considered a novel green-technique that minimized the energy-utilization with higher-efficiency.

Funder

the Lebanese Industrial Research Achievements (LIRA), Ministry of Industry and the Industrial Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3