Author:
Kasai Mariko,Omae Yosuke,Kawai Yosuke,Shibata Akiko,Hoshino Ai,Mizuguchi Masashi,Tokunaga Katsushi
Abstract
AbstractAcute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is a severe encephalopathy preceded by viral infections with high fever. AESD is a multifactorial disease, however, few disease susceptibility genes have previously been identified. Here, we conducted a genome-wide association study (GWAS) and assessed functional variants in non-coding regions to study genetic susceptibility in AESD using 254 Japanese children with AESD and 799 adult healthy controls. We also performed a microRNA enrichment analysis using GWAS statistics to search for candidate biomarkers in AESD. The variant with the lowest p-value, rs1850440, was located in the intron of serine/threonine kinase 39 gene (STK39) on chromosome 2q24.3 (p = 2.44 × 10−7, odds ratio = 1.71). The minor allele T of rs1850440 correlated with the stronger expression of STK39 in peripheral blood. This variant possessed enhancer histone modification marks in STK39, the encoded protein of which activates the p38 mitogen-activated protein kinase (MAPK) pathway. In the replication study, the odds ratios of three SNPs, including rs1850440, showed the same direction of association with that in the discovery stage GWAS. One of the candidate microRNAs identified by the microRNA enrichment analysis was associated with inflammatory responses regulated by the MAPK pathway. This study identified STK39 as a novel susceptibility locus of AESD, found microRNAs as potential biomarkers, and implicated immune responses and the MAPK cascade in its pathogenesis.
Funder
Grant-in-Aid for Scientific Research
Grant-in-aid for Policy Research for Intractable Diseases
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献