Simulation-based assessment of the performance of hierarchical abundance estimators for camera trap surveys of unmarked species

Author:

Martijn Bollen,Jim Casaer,Natalie Beenaerts,Thomas Neyens

Abstract

AbstractKnowledge on animal abundances is essential in ecology, but is complicated by low detectability of many species. This has led to a widespread use of hierarchical models (HMs) for species abundance, which are also commonly applied in the context of nature areas studied by camera traps (CTs). However, the best choice among these models is unclear, particularly based on how they perform in the face of complicating features of realistic populations, including: movements relative to sites, multiple detections of unmarked individuals within a single survey, and low detectability. We conducted a simulation-based comparison of three HMs (Royle-Nichols, binomial N-mixture and Poisson N-mixture model) by generating groups of unmarked individuals moving according to a bivariate Ornstein–Uhlenbeck process, monitored by CTs. Under a range of simulated scenarios, none of the HMs consistently yielded accurate abundances. Yet, the Poisson N-mixture model performed well when animals did move across sites, despite accidental double counting of individuals. Absolute abundances were better captured by Royle-Nichols and Poisson N-mixture models, while a binomial N-mixture model better estimated the actual number of individuals that used a site. The best performance of all HMs was observed when estimating relative trends in abundance, which were captured with similar accuracy across these models.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3