Standardizing continuous data classifications in a virtual T-maze using two-layer feedforward networks

Author:

Rodrigues Johannes,Ziebell Philipp,Müller Mathias,Hewig Johannes

Abstract

AbstractThere continues to be difficulties when it comes to replication of studies in the field of Psychology. In part, this may be caused by insufficiently standardized analysis methods that may be subject to state dependent variations in performance. In this work, we show how to easily adapt the two-layer feedforward neural network architecture provided by Huang1 to a behavioral classification problem as well as a physiological classification problem which would not be solvable in a standardized way using classical regression or “simple rule” approaches. In addition, we provide an example for a new research paradigm along with this standardized analysis method. This paradigm as well as the analysis method can be adjusted to any necessary modification or applied to other paradigms or research questions. Hence, we wanted to show that two-layer feedforward neural networks can be used to increase standardization as well as replicability and illustrate this with examples based on a virtual T-maze paradigm2–5 including free virtual movement via joystick and advanced physiological data signal processing.

Funder

Julius-Maximilians-Universität Würzburg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3