Deep amoA amplicon sequencing reveals community partitioning within ammonia-oxidizing bacteria in the environmentally dynamic estuary of the River Elbe

Author:

Malinowski M.,Alawi M.ORCID,Krohn I.,Ruff S.,Indenbirken D.,Alawi M.ORCID,Karrasch M.,Lüschow R.,Streit W. R.ORCID,Timmermann G.,Pommerening-Röser A.

Abstract

AbstractThe community composition of betaproteobacterial ammonia-oxidizing bacteria (ß-AOB) in the River Elbe Estuary was investigated by high throughput sequencing of ammonia monooxygenase subunit A gene (amoA) amplicons. In the course of the seasons surface sediment samples from seven sites along the longitudinal profile of the upper Estuary of the Elbe were investigated. We observed striking shifts of the ß-AOB community composition according to space and time. Members of the Nitrosomonas oligotropha-lineage and the genus Nitrosospira were found to be the dominant ß-AOB within the river transect, investigated. However, continuous shifts of balance between members of both lineages along the longitudinal profile were determined. A noticeable feature was a substantial increase of proportion of Nitrosospira-like sequences in autumn and of sequences affiliated with the Nitrosomonas marina-lineage at downstream sites in spring and summer. Slightly raised relative abundances of sequences affiliated with the Nitrosomonas europaea/Nitrosomonas mobilis-lineage and the Nitrosomonas communis-lineage were found at sampling sites located in the port of Hamburg. Comparisons between environmental parameters and AOB-lineage (ecotype) composition revealed promising clues that processes happening in the fluvial to marine transition zone of the Elbe estuary are reflected by shifts in the relative proportion of ammonia monooxygenase sequence abundance, and hence, we propose ß-AOB as appropriate indicators for environmental dynamics and the ecological condition of the Elbe Estuary.

Funder

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phylogenetic Characterization of Nitrifying Bacteria Isolated from East Kolkata Wetland;Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022);2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3