Author:
Flores-Villalva Susana,O’Brien Megan B.,Reid Cian,Lacey Seán,Gordon Stephen V.,Nelson Corwin,Meade Kieran G.
Abstract
AbstractA role for vitamin D in the immune system is emerging from human research but data in the bovine is limited. In the current study, 48 Holstein–Friesian calves were randomly assigned to one of 4 groups designed to expose calves to divergent vitamin D levels for a 7 month period and to determine its effects on circulating immunity in young calves. Concentrations of circulating 25-hydroxyvitamin D (25OHD) was measured in serum using a commercial ELISA with validated bovine standards. Results showed that mean circulating concentrations of 25OHD at birth was 7.64 ± 3.21 ng/ml indicating vitamin D deficiency. Neither the injection of Vit D3 at birth nor the elevated levels in milk replacer yield discernible changes to pre-weaning circulating concentration of 25OHD. No calf reached the recommended level of vitamin D immune sufficiencyof 30 ng/ml of 25OHD until at least 3 months of age (T4). Increasing dietary Vit D3 via ration in the post-weaning period significantly elevated 25OHD concentrations in serum in VitD-In calves. Maximal levels of circulating 25OHD were achieved in VitD-Out calves, reaching 60.86 ± 7.32 ng/ml at 5 months of age (T7). Greatest divergence in haematology profile was observed between Ctl-In vs VitD-In groups with Ctl-In calves showing an elevated count of neutrophils, eosinophils, and basophils associated with reduced 25OHD concentrations. Neither IL-8 expression nor ROS production in serum were significantly different between calves with high and low 25OHD, indicating that other vitamin D-dependent mechanisms may contribute to the divergent circulating cellular profiles observed. This novel data on the vitamin D status of neonatal calves identifies a significant window of vitamin D insufficiency which is associated with significant differences in circulating immune cell profiles. Vitamin D insufficiency may therefore exacerbate pre-weaning disease susceptibility, and further work in now warranted.
Funder
Science Foundation Ireland
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Hymoller, L. & Jensen, S. K. 25-Hydroxycholecalciferol status in plasma is linearly correlated to daily summer pasture time in cattle at 56 degrees N. Br. J. Nutr. 108, 666–671. https://doi.org/10.1017/S0007114511005964 (2012).
2. Nelson, C. D. & . Merriman, K. E. Vitamin D metabolism in dairy cattle and implications for dietary requirements. In: Proceedings of the 25th Florida Ruminant Nutrition Symposium, Gainesville, FL. http://dairy.ifas.ufl.edu/rns/#2014. p. 78–90 (2014).
3. Hymoller, L. & Jensen, S. K. Plasma transport of ergocalciferol and cholecalciferol and their 25-hydroxylated metabolites in dairy cows. Domest. Anim. Endocrinol. 59, 44–52. https://doi.org/10.1016/j.domaniend.2016.11.002 (2017).
4. Hewison, M. Vitamin D and the immune system: new perspectives on an old theme. Endocrinol. Metab. Clin. N. Am. 39, 365–379. https://doi.org/10.1016/j.ecl.2010.02.010 (2010) (table of contents).
5. Weir, R. R. et al. Environmental and genetic factors influence the vitamin D content of cows’ milk. Proc. Nutr. Soc. 76, 76–82. https://doi.org/10.1017/S0029665116000811 (2017).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献