End fire linear antenna array synthesis using differential evolution inspired Adaptive Naked Mole Rat Algorithm

Author:

Singh Harbinder,Mittal Nitin,Gupta Amit,Singh Pratap,Gared Fikreselam

Abstract

AbstractLinear antenna arrays (LAAs) play a critical role in smart system communication applications such as the Internet of Things (IoT), mobile communication and beamforming. However, minimizing secondary lobes while maintaining a low beamwidth remains challenging. This study presents an enhanced synthesis methodology for LAAs using the Adaptive Naked Mole Rat Algorithm (ANMRA). ANMRA, inspired by mole-rat mating habits, improves exploration and exploitation capabilities for directive LAA applications. The performance of ANMRA is assessed using the CEC 2019 benchmark test functions, a widely adopted standard for statistical evaluation in optimization algorithms. The proposed methodology results are also benchmarked against state-of-the-art algorithms, including the Salp Swarm Algorithm (SSA), Cuckoo Search (CS), Artificial Hummingbird Algorithm (AHOA), Chimp Optimization Algorithm (ChOA), and Naked Mole Rat Algorithm (NMRA). The results demonstrate that ANMRA achieves superior performance among the benchmarked algorithms by successfully minimizing secondary lobes and obtaining a narrow beamwidth. The ANMRA controlled design achieves the lowest Side Lobe Level (SLL) of − 37.08 dB and the smallest beamwidth of 74.68°. The statistical assessment using the benchmark test functions further confirms the effectiveness of ANMRA. By optimizing antenna element magnitude and placement control, ANMRA enables precise primary lobe placement, grating lobe elimination, and high directivity in LAAs. This research contributes to advancing smart system communication technologies, particularly in the context of IoT and beamforming applications, by providing an enhanced synthesis methodology for LAAs that offers improved performance in terms of secondary lobe reduction and beamwidth optimization.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3