Supporting optimization of thick seam roadway with top coal based on orthogonal matrix analysis

Author:

Jia Ce,Li Sheng,Fan Chaojun,Luo Mingkun,Zhou Lijun,Pu Ziang,Yang Lei

Abstract

AbstractAiming at the problem of large deformation and difficulty in surrounding rock control of the top coal roadway in thick seam, theoretical analysis, theoretical analysis, numerical simulation, orthogonal matrix analysis and other methods were used to study the roof deformation and support parameter optimization of the top coal roadway in thick seam. Firstly, the structural model and roof mechanical model of the top coal roadway in thick seam were established, and the deformation coefficient TK was defined based on the relationship between curvature radius and bending moment, maximum bending moment and ultimate tensile strength of beam. According to the ratio of deformation rate between TK and beam to determine the roof deformation mode of top coal roadway, the discriminant conditions of roadway roof stability under two deformation conditions are obtained. Due to the characteristics of serious coal-rock fragmentation, large roof deformation, and integration of top coal and side coal. Therefore, the combined support method of “high prestressed long and short anchor cables” is proposed by double arch bearing structure control technology. Finally, based on the orthogonal matrix analysis method of supporting parameters optimization of the top coal roadway in thick seam, the analysis amount of supporting scheme is significantly reduced, the comprehensive evaluation of multi-factor and multi-supporting effect of roadway support is realized, and the optimal supporting scheme is obtained. Compared with the surrounding rock of the roadway without support, the deformation of the roof is reduced by 27.27%, the deformation of the two sides is reduced by 45.24%, and the tensile failure volume is reduced by 54.66%. The top coal roadway in thick seam has been effectively controlled, which provides guarantee for high yield and high efficiency of the mine.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Postdoctoral Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3