Collecting duct cells show differential retinoic acid responses to acute versus chronic kidney injury stimuli

Author:

Papadimitriou Alexandros,Romagnani Paola,Angelotti Maria Lucia,Noor Mazhar,Corcoran Jonathan,Raby Katie,Wilson Patricia D.,Li Joan,Fraser Donald,Piedagnel Remi,Hendry Bruce M.,Xu Qihe

Abstract

AbstractRetinoic acid (RA) activates RA receptors (RAR), resulting in RA response element (RARE)-dependent gene expression in renal collecting duct (CD). Emerging evidence supports a protective role for this activity in acute kidney injury (AKI) and chronic kidney disease (CKD). Herein, we examined this activity in RARE-LacZ transgenic mice and by RARE-Luciferase reporter assays in CD cells, and investigated how this activity responds to neurotransmitters and mediators of kidney injury. In RARE-LacZ mice, Adriamycin-induced heavy albuminuria was associated with reduced RA/RAR activity in CD cells. In cultured CD cells, RA/RAR activity was repressed by acetylcholine, albumin, aldosterone, angiotensin II, high glucose, cisplatin and lipopolysaccharide, but was induced by aristolochic acid I, calcitonin gene-related peptide, endothelin-1, gentamicin, norepinephrine and vasopressin. Compared with age-matched normal human CD cells, CD-derived renal cystic epithelial cells from patients with autosomal recessive polycystic kidney disease (ARPKD) had significantly lower RA/RAR activity. Synthetic RAR agonist RA-568 was more potent than RA in rescuing RA/RAR activity repressed by albumin, high glucose, angiotensin II, aldosterone, cisplatin and lipopolysaccharide. Hence, RA/RAR  in CD cells is a convergence point of regulation by neurotransmitters and mediators of kidney injury, and may be a novel therapeutic target.

Funder

Kidney Research UK

Polycystic Kidney Disease Charity, UK

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3