Investigation of structural, optical, morphological, photoluminescence and antimicrobial properties of SrAl2O4:Eu2+ nanophosphor by using urea fuel combustion method

Author:

Litoriya Praveen Kumar,Kurmi Swati,Verma Ashish

Abstract

AbstractIn the present study, the Sr1−xAl2O4:Eux (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) phosphor were synthesized by urea fuel combustion method at 580 °C temperature with very high brightness and long after glow. The structural studies carried out using XRD technique shows that the sample is single phased in nature and it gets crystallized into monoclinic phase with standard JCPDS 34-0379 card. The oxide formation was examined using FTIR technique. UV–Visible spectroscopy has been used to study the optical band gap of material, it’s value in the current case, Sr1−xAl2O4:Eux (x = 0.05) is 3.78 eV. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM), confirm the formation of nano particle, with average particle size around 6–25 nm. The elemental composition was confirmed by using Energy Dispersive X-ray (EDX) technique. The photo-luminescence study revealed that it gives broad emission spectra using excitation wavelength λex = 365 nm. It is observed that the Sr1−xAl2O4:Eux (x = 0.05) phosphor give maximum emission intensity and it can be regulated as green (0.23, 0.49) emission with the colour temperature 3224 K, CRI 78, and colour purity 60.69%. The spectra are intense and lie in the visible range. The green lights can regulate the circadian rhythm through melatonin, and it is also suitable for green LED and other optoelectronic devices. The Sr1−xAl2O4:Eux (x = 0.00 and 0.05) phosphor behaves like eco-materials, because nano particles of Sr1−xAl2O4:Eux (x = 0.05) does not show antimicrobial activity.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3