Predicting long-term outcomes of kidney transplantation in the era of artificial intelligence

Author:

Badrouchi Samarra,Bacha Mohamed Mongi,Ahmed Abdulaziz,Ben Abdallah Taieb,Abderrahim Ezzedine

Abstract

AbstractThe ability to accurately predict long-term kidney transplant survival can assist nephrologists in making therapeutic decisions. However, predicting kidney transplantation (KT) outcomes is challenging due to the complexity of the factors involved. Artificial intelligence (AI) has become an increasingly important tool in the prediction of medical outcomes. Our goal was to utilize both conventional and AI-based methods to predict long-term kidney transplant survival. Our study included 407 KTs divided into two groups (group A: with a graft lifespan greater than 5 years and group B: with poor graft survival). We first performed a traditional statistical analysis and then developed predictive models using machine learning (ML) techniques. Donors in group A were significantly younger. The use of Mycophenolate Mofetil (MMF) was the only immunosuppressive drug that was significantly associated with improved graft survival. The average estimated glomerular filtration rate (eGFR) in the 3rd month post-KT was significantly higher in group A. The number of hospital readmissions during the 1st year post-KT was a predictor of graft survival. In terms of early post-transplant complications, delayed graft function (DGF), acute kidney injury (AKI), and acute rejection (AR) were significantly associated with poor graft survival. Among the 35 AI models developed, the best model had an AUC of 89.7% (Se: 91.9%; Sp: 87.5%). It was based on ten variables selected by an ML algorithm, with the most important being hypertension and a history of red-blood-cell transfusion. The use of AI provided us with a robust model enabling fast and precise prediction of 5-year graft survival using early and easily collectible variables. Our model can be used as a decision-support tool to early detect graft status.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3