Bovine serum albumin-functionalized graphene-decorated strontium as a potent complex nanoparticle for bone tissue engineering

Author:

Akbari Hossein,Askari Esfandyar,Naghib Seyed Morteza,Salehi Zeinab

Abstract

AbstractGraphene and its family have a great potential in tissue engineering because of their super mechanical properties, electrical conductivity and antibacterial properties. Considering other properties of graphene such as high surface area and ready-to-use functionalization according to the high oxygen-containing groups in graphene oxide family, some needs could be addressed in bone tissue engineering. Herein, we synthesized and decorated strontium nanoparticles (SrNPs) during the reduction process of graphene oxide using green and novel method. Without using hydrazine or chemical linkers, strontium NPs were synthesized and decorated on the surface of rGO simultaneously using BSA. The results of the UV–Vis, FTIR and Raman spectroscopy demonstrated that BSA could successfully reduce graphene oxide and decorated SrNPs on the surface of rGO. FESEM and TEM exhibited that in situ synthesized SrNPs had 25–30 nm diameter. Interestingly, cell viability for MC3T3-E1 cells treated with SrNPs-rGO, were significantly higher than BSA-rGO and GO in constant concentration. Furthermore, we investigated the alkaline phosphatase activity (ALP) of these nanosheets that the results demonstrated Sr-BSA-rGO enhanced ALP activity more than GO and BSA-rGO. Remarkably, the relative expression of RUNX 2 and Col1 genes of MC3T3-E1 cells was boosted when treated with Sr-BSA-rGO nanosheets. This study revealed that using proteins and other biomolecules as green and facile agent for decoration of smart nanoparticles on the surface of nanosheets, would be promising and assist researcher to replace the harsh and toxic hydrazine like materials with bio-friendly method. These results demonstrated that Sr-BSA-rGO had the excellent capability for regenerating bone tissue and could be used as an osteogenesis booster in implants.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3