Direct observations of X-rays produced by upward positive lightning

Author:

Oregel-Chaumont Toma,Šunjerga Antonio,Hettiarachchi Pasan,Cooray Vernon,Rubinstein Marcos,Rachidi Farhad

Abstract

AbstractX-rays have been observed in natural downward cloud-to-ground lightning for over 20 years and in rocket-triggered lightning for slightly less. In both cases, this energetic radiation has been detected during the stepped and dart leader phases of downward negative flashes. More recently, X-rays have also been reported during the dart leader phase of upward negative flashes. In this study, we present the observations of four upward positive lightning flashes from the Säntis Tower (2.5 km ASL) in Switzerland. These consist of the simultaneous records of electric current passing through the tower, and electric field strength and X-ray flux 20 m from the tower base. One of the flashes was captured by a high-speed camera operating at 24,000 frames per second, stills from which are also presented. We detected X-rays during the initial phase of upward negative leader propagation, which can be associated with the leader-stepping process from electric field and current waveforms. To the best of our knowledge, this is the first time that such measurements are reported in the literature. The obtained time-synchronised data confirm that the X-ray emissions detected are associated with the initial steps of the upward negative leader. The frequency and energy of X-ray pulses appear to decrease as functions of time, with pulses disappearing altogether within the first millisecond of the leader initiation. X-ray emission also appears to be correlated with the maximum current-derivative and the electric field change of leader steps, consistent with cold electron runaway. These observations contribute to improving our understanding of upward lightning, which is a primary source of damage to tall structures such as wind turbines and telecommunications towers, as well as aircraft during takeoff and landing.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3