Trade-off analysis between gm/ID and fT of GNR-FETs with single-gate and double-gate device structure

Author:

Ahmad Md Akram,Kumar Pankaj,Mech Bhubon Chandra,Kumar Jitendra

Abstract

AbstractThis study examines the operational parameters of field-effect transistors (FETs) using single-gate (SG) and double-gate (DG) graphene nanoribbons (GNRs) within the analog/RF domain. A detailed exploration is conducted through an atomistic pz orbital model, derived from the Hamiltonian of graphene nanoribbons, employing the nonequilibrium Green’s function formalism (NEGF) for analysis. The atomic characteristics of the GNRFETs channel are accurately described by utilizing a tight-binding Hamiltonian with an atomistic pz orbital basis set. The primary focus of the analysis revolves around essential analog/RF parameters such as transconductance, transconductance generation factor (TGF), output resistance, early voltage, intrinsic gain, gate capacitance, cut-off frequency, and transit time. Furthermore, the study assesses the gain frequency product (GFP), transfer frequency product (TFP), and gain transfer frequency product (GTFP) to evaluate the balance between transistor efficiency, gain, and cut-off frequency. The research outcomes indicate that double-gate GNRFETs exhibit superior analog/RF performance in comparison to their single-gate counterparts. However, both types of devices demonstrate cut-off frequencies in the gigahertz range. The extensive data presented in this study provides valuable insights into the characteristics of SG and DG GNRFETs, particularly in terms of the figure-of-merit (FoM) for analog/RF performance, offering a comprehensive analysis of the trade-offs in analog applications. In addition, the analysis has been extended be performing a high-performance hybrid 6T static random-access memory (SRAM) to get the impact in their circuit level variation as well as improvement in their circuit performance.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive characterization of a high‐performance double heterojunction InGaAs pHEMT for linear power‐efficient amplifiers applications;International Journal of Numerical Modelling: Electronic Networks, Devices and Fields;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3