Data-driven modelling and spatial complexity supports heterogeneity-based integrative management for eliminating Simulium neavei-transmitted river blindness

Author:

Michael Edwin,Smith Morgan E.,Singh Brajendra K.ORCID,Katabarwa Moses N.,Byamukama Edson,Habomugisha Peace,Lakwo Thomson,Tukahebwa Edridah,Richards Frank O.

Abstract

AbstractConcern is emerging regarding the challenges posed by spatial complexity for modelling and managing the area-wide elimination of parasitic infections. While this has led to calls for applying heterogeneity-based approaches for addressing this complexity, questions related to spatial scale, the discovery of locally-relevant models, and its interaction with options for interrupting parasite transmission remain to be resolved. We used a data-driven modelling framework applied to infection data gathered from different monitoring sites to investigate these questions in the context of understanding the transmission dynamics and efforts to eliminate Simulium neavei- transmitted onchocerciasis, a macroparasitic disease that causes river blindness in Western Uganda and other regions of Africa. We demonstrate that our Bayesian-based data-model assimilation technique is able to discover onchocerciasis models that reflect local transmission conditions reliably. Key management variables such as infection breakpoints and required durations of drug interventions for achieving elimination varied spatially due to site-specific parameter constraining; however, this spatial effect was found to operate at the larger focus level, although intriguingly including vector control overcame this variability. These results show that data-driven modelling based on spatial datasets and model-data fusing methodologies will be critical to identifying both the scale-dependent models and heterogeneity-based options required for supporting the successful elimination of S. neavei-borne onchocerciasis.

Funder

Foundation for the National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3