Molecular mapping of QTLs for yield related traits in recombinant inbred line (RIL) population derived from the popular rice hybrid KRH-2 and their validation through SNP genotyping

Author:

Kulkarni Swapnil Ravindra,Balachandran S. M.,Ulaganathan K.,Balakrishnan Divya,Praveen M.,Prasad A. S. Hari,Fiyaz R. A.,Senguttuvel P.,Sinha Pragya,Kale Ravindra R.,Rekha G.,Kousik M. B. V. N.,Harika G.,Anila M.,Punniakoti E.,Dilip T.,Hajira S. K.,Pranathi K.,Das M. Ayyappa,Shaik Mastanbee,Chaitra K.,Rao P. Koteswara,Gangurde Sunil S.,Pandey Manish K.,Sundaram R. M.

Abstract

AbstractThe study was undertaken to identify the quantitative trait loci (QTLs) governing yield and its related traits using a recombinant inbred line (RIL) population derived from the popular rice hybrid, KRH-2 (IR58025A/KMR3R). A genetic map spanning 294.2 cM was constructed with 126 simple sequence repeats (SSR) loci uniformly distributed across the rice genome. QTL analysis using phenotyping and genotyping information identified a total of 22 QTLs. Of these, five major effect QTLs were identified for the following traits: total grain yield/plant (qYLD3-1), panicle weight (qPW3-1), plant height (qPH12-1), flag leaf width (qFLW4-1) and panicle length (qPL3-1), explaining 20.23–22.76% of the phenotypic variance with LOD scores range of 6.5–10.59. Few genomic regions controlling several traits (QTL hotspot) were identified on chromosome 3 for total grain yield/plant (qYLD3-1) and panicle length (qPL3-1). Significant epistatic interactions were also observed for total grain yield per plant (YLD) and panicle length (PL). While most of these QTLs were observed to be co-localized with the previously reported QTL regions, a novel, major QTL associated with panicle length (qPL3-1) was also identified. SNP genotyping of selected high and low yielding RILs and their QTL mapping with 1,082 SNPs validated most of the QTLs identified through SSR genotyping. This facilitated the identification of novel major effect QTLs with much better resolution and precision. In-silico analysis of novel QTLs revealed the biological functions of the putative candidate gene (s) associated with selected traits. Most of the high-yielding RILs possessing the major yield related QTLs were identified to be complete restorers, indicating their possible utilization in development of superior rice hybrids.

Funder

Department of Science and Technology (DST), Government of India

SERB-NPDF Scheme, Department of Science and Technology, Government of India

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference138 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3