Abstract
AbstractClimate change affects ecosystems worldwide and is threatening biodiversity. Insects, as ectotherm organisms, are strongly dependent on the thermal environment. Yet, little is known about the effects of summer heat and drought on insect diversity. In the Mediterranean climate zone, a region strongly affected by climate change, hot summers might have severe effects on insect communities. Especially the larval stage might be sensitive to thermal variation, as larvae—compared to other life stages—cannot avoid hot temperatures and drought by dormancy. Here we ask, whether inter-annual fluctuations in Mediterranean moth diversity can be explained by temperature (TLarv) and precipitation during larval development (HLarv). To address our question, we analyzed moth communities of a Mediterranean coastal forest during the last 20 years. For species with summer-developing larvae, species richness was significantly negatively correlated with TLarv, while the community composition was affected by both, TLarv and HLarv. Therefore, summer-developing larvae seem particularly sensitive to climate change, as hot summers might exceed the larval temperature optima and drought reduces food plant quality. Increasing frequency and severity of temperature and drought extremes due to climate change, therefore, might amplify insect decline in the future.
Funder
Johann Wolfgang Goethe-Universität, Frankfurt am Main
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. IPCC (ed.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).
2. Lionello, P. & Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Change 18, 1481–1493. https://doi.org/10.1007/s10113-018-1290-1 (2018).
3. Tuel, A. & Eltahir, E. A. B. Why is the Mediterranean a climate change hot spot?. J. Clim. 33, 5829–5843. https://doi.org/10.1175/JCLI-D-19-0910.1 (2020).
4. Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638. https://doi.org/10.1038/s41559-020-01303-0 (2020).
5. Ruffault, J. et al. Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci. Rep. 10, 13790. https://doi.org/10.1038/s41598-020-70069-z (2020).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献