Natural selection supports escape from concerted evolution of a recently duplicated CEACAM1 paralog in the ruminant CEA gene family

Author:

Hänske Jana,Hammacher Tim,Grenkowitz Franziska,Mansfeld Martin,Dau Tung Huy,Maksimov Pavlo,Friedrich Christin,Zimmermann WolfgangORCID,Kammerer Robert

Abstract

AbstractConcerted evolution is often observed in multigene families such as the CEA gene family. As a result, sequence similarity of paralogous genes is significantly higher than expected from their evolutionary distance. Gene conversion, a “copy paste” DNA repair mechanism that transfers sequences from one gene to another and homologous recombination are drivers of concerted evolution. Nevertheless, some gene family members escape concerted evolution and acquire sufficient sequence differences that orthologous genes can be assigned in descendant species. Reasons why some gene family members can escape while others are captured by concerted evolution are poorly understood. By analyzing the entire CEA gene family in cattle (Bos taurus) we identified a member (CEACAM32) that was created by gene duplication and cooption of a unique transmembrane domain exon in the most recent ancestor of ruminants. CEACAM32 shows a unique, testis-specific expression pattern. Phylogenetic analysis indicated that CEACAM32 is not involved in concerted evolution of CEACAM1 paralogs in ruminants. However, analysis of gene conversion events revealed that CEACAM32 is subject to gene conversion but remarkably, these events are found in the leader exon and intron sequences but not in exons coding for the Ig-like domains. These findings suggest that natural selection hinders gene conversion affecting protein sequences of the mature protein and thereby support escape of CEACAM32 from concerted evolution.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Wirtschaftliche Zusammenarbeit und Entwicklung

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3