A robust deep learning approach for tomato plant leaf disease localization and classification

Author:

Nawaz Marriam,Nazir Tahira,Javed Ali,Masood Momina,Rashid Junaid,Kim Jungeun,Hussain Amir

Abstract

AbstractTomato plants' disease detection and classification at the earliest stage can save the farmers from expensive crop sprays and can assist in increasing the food quantity. Although, extensive work has been presented by the researcher for the tomato plant disease classification, however, the timely localization and identification of various tomato leaf diseases is a complex job as a consequence of the huge similarity among the healthy and affected portion of plant leaves. Furthermore, the low contrast information between the background and foreground of the suspected sample has further complicated the plant leaf disease detection process. To deal with the aforementioned challenges, we have presented a robust deep learning (DL)-based approach namely ResNet-34-based Faster-RCNN for tomato plant leaf disease classification. The proposed method includes three basic steps. Firstly, we generate the annotations of the suspected images to specify the region of interest (RoI). In the next step, we have introduced ResNet-34 along with Convolutional Block Attention Module (CBAM) as a feature extractor module of Faster-RCNN to extract the deep key points. Finally, the calculated features are utilized for the Faster-RCNN model training to locate and categorize the numerous tomato plant leaf anomalies. We tested the presented work on an accessible standard database, the PlantVillage Kaggle dataset. More specifically, we have obtained the mAP and accuracy values of 0.981, and 99.97% respectively along with the test time of 0.23 s. Both qualitative and quantitative results confirm that the presented solution is robust to the detection of plant leaf disease and can replace the manual systems. Moreover, the proposed method shows a low-cost solution to tomato leaf disease classification which is robust to several image transformations like the variations in the size, color, and orientation of the leaf diseased portion. Furthermore, the framework can locate the affected plant leaves under the occurrence of blurring, noise, chrominance, and brightness variations. We have confirmed through the reported results that our approach is robust to several tomato leaf diseases classification under the varying image capturing conditions. In the future, we plan to extend our approach to apply it to other parts of plants as well.

Funder

Technology development Program of MSS

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference64 articles.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3