Development of a model to predict the age at breast cancer diagnosis in a global population

Author:

Kim Ha YoungORCID,Mullaert Jimmy,Tondreau Ambre,Park Boyoung,Rouzier RomanORCID

Abstract

AbstractKnowing the mean age at diagnosis of breast cancer (BC) in a country is important for setting up an efficient BC screening program. The aim of this study was to develop and validate a model to predict the mean age at diagnosis of BC at the country level. To develop the model, we used the CI5plus database from the IARC, which contains incidence data for 122 selected populations for a minimum of 15 consecutive years from 1993 to 2012 and data from the World Bank. The standard model was fitted with a generalized linear model with the age of the population, growth domestic product per capita (GDPPC) and fertility rate as fixed effects and continent as a random effect. The model was validated in registries of the Cancer Incidence in Five Continents that are not included in the CI5plus database (1st validation set: 1950–2012) and in the most recently released volume (2nd validation set: 2013–2017). The intercept of the model was 30.9 (27.8–34.1), and the regression coefficients for population age, GDPPC and fertility rate were 0.55 (95% CI: 0.53–0.58, p < 0.001), 0.46 (95% CI: 0.26–0.67, p < 0.001) and 1.62 (95% CI: 1.42–1.88, p < 0.001), respectively. The marginal R2 and conditional R2 were 0.22 and 0.81, respectively, suggesting that 81% percent of the variance in the mean age at diagnosis of BC was explained by the variance in population age, GDPPC and fertility rate through linear relationships. The model was highly accurate, as the correlations between the predicted age from the model and the observed mean age at diagnosis of BC were 0.64 and 0.89, respectively, and the mean relative error percentage errors were 5.2 and 3.1% for the 1st and 2nd validation sets, respectively. We developed a robust model based on population age and continent to predict the mean age at diagnosis of BC in populations. This tool could be used to implement BC screening in countries without prevention programs.

Funder

Korea Health Industry Development Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3