Degradome, small RNAs and transcriptome sequencing of a high-nicotine cultivated tobacco uncovers miRNA’s function in nicotine biosynthesis

Author:

Jin Jingjing,Xu Yalong,Lu Peng,Chen Qiansi,Liu Pingping,Wang Jinbang,Zhang Jianfeng,Li Zefeng,Yang Aiguo,Li Fengxia,Cao Peijian

Abstract

AbstractTobacco (Nicotiana tabacum) is considered as the model plant for alkaloid research, of which nicotine accounts for 90%. Many nicotine biosynthetic genes have been identified and were known to be regulated by jasmonate-responsive transcription factors. As an important regulator in plant physiological processes, whether small RNAs are involved in nicotine biosynthesis is largely unknown. Here, we combine transcriptome, small RNAs and degradome analysis of two native tobacco germplasms YJ1 and ZY100 to investigate small RNA’s function. YJ1 leaves accumulate twofold higher nicotine than ZY100. Transcriptome analysis revealed 3,865 genes which were differently expressed in leaf and root of two germplasms, including some known nicotine and jasmonate pathway genes. By small RNA sequencing, 193 miRNAs were identified to be differentially expressed between YJ1 and ZY100. Using in silico and degradome sequencing approaches, six nicotine biosynthetic genes and seven jasmonate pathway genes were predicted to be targeted by 77 miRNA loci. Three pairs among them were validated by transient expression in vivo. Combined analysis of degradome and transcriptome datasets revealed 51 novel miRNA-mRNA interactions that may regulate nicotine biosynthesis. The comprehensive analysis of our study may provide new insights into the regulatory network of nicotine biosynthesis.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3