Normalized difference vegetation index as the dominant predicting factor of groundwater recharge in phreatic aquifers: case studies across Iran

Author:

Parizi Esmaeel,Hosseini Seiyed Mossa,Ataie-Ashtiani Behzad,Simmons Craig T.

Abstract

AbstractThe estimation of long-term groundwater recharge rate ($${GW}_{r}$$ GW r ) is a pre-requisite for efficient management of groundwater resources, especially for arid and semi-arid regions. Precise estimation of $${GW}_{r}$$ GW r is probably the most difficult factor of all measurements in the evaluation of GW resources, particularly in semi-arid regions in which the recharge rate is typically small and/or regions with scarce hydrogeological data. The main objective of this study is to find and assess the predicting factors of $${GW}_{r}$$ GW r at an aquifer scale. For this purpose, 325 Iran’s phreatic aquifers (61% of Iran’s aquifers) were selected based on the data availability and the effect of eight predicting factors were assessed on $${GW}_{r}$$ GW r estimation. The predicting factors considered include Normalized Difference Vegetation Index (NDVI), mean annual temperature ($$T$$ T ), the ratio of precipitation to potential evapotranspiration ($${P/ET}_{P}$$ P / E T P ), drainage density ($${D}_{d}$$ D d ), mean annual specific discharge ($${Q}_{s}$$ Q s ), Mean Slope ($$S$$ S ), Soil Moisture ($${SM}_{90}$$ SM 90 ), and population density ($${Pop}_{d}$$ Pop d ). The local and global Moran’s I index, geographically weighted regression (GWR), and two-step cluster analysis served to support the spatial analysis of the results. The eight predicting factors considered are positively correlated to $${GW}_{r}$$ GW r and the NDVI has the greatest influence followed by the $$P/{ET}_{P}$$ P / ET P and $${SM}_{90}$$ SM 90 . In the regression model, NDVI solely explained 71% of the variation in $${GW}_{r}$$ GW r , while other drivers have only a minor modification (3.6%). The results of this study provide new insight into the complex interrelationship between $${GW}_{r}$$ GW r and vegetation density indicated by the NDVI. The findings of this study can help in better estimation of $${GW}_{r}$$ GW r especially for the phreatic aquifers that the hydrogeological ground-data requisite for establishing models are scarce.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3