Author:
Han Haitao,Wang Chong,Zuo Tongxing,Liu Zhenyu
Abstract
AbstractStructural topology constraints in topology optimization are an important research topic. The structural topology is characterized by the topological invariance of the number of holes. The holes of a structure in 3D space can be classified as internally enclosed holes and external through-holes (or tunnels). The genus is the number of tunnels. This article proposes the quotient set design variable method (QSDV) to implement the inequality constraint on the maximum genus allowed in an optimized structure for 3D structural topology optimization. The principle of the QSDV is to classify the changing design variables according to the connectivity of the elements in a structure to obtain the quotient set and update the corresponding elements in the quotient set to meet the topological constraint. Based on the standard relaxation algorithm discrete variable topology optimization method (DVTOCRA), the effectiveness of the QSDV is illustrated in numerical examples of a 3D cantilever beam.
Funder
National Science Foundation of China
National Science and Technology Major Project
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献