Author:
Strickland Michael R.,Ibanez Kristen R.,Yaroshenko Mariya,Diaz Carolina Ceballos,Borchelt David R.,Chakrabarty Paramita
Abstract
AbstractInflammatory signaling is thought to modulate the neurodegenerative cascade in amyotrophic lateral sclerosis (ALS). We have previously shown that expression of Interleukin-10 (IL-10), a classical anti-inflammatory cytokine, extends lifespan in the SOD1-G93A mouse model of familial ALS. Here we test whether co-expression of the decoy chemokine receptor M3, that can scavenge inflammatory chemokines, augments the efficacy of IL-10. We found that recombinant adeno-associated virus (AAV)-mediated expression of IL-10, alone, or in combination with M3, resulted in modest extension of lifespan relative to control SOD1-G93A cohort. Interestingly neither AAV-M3 alone nor AAV-IL-10 + AAV-M3 extend survival beyond that of the AAV-IL-10 alone cohort. Focused transcriptomic analysis revealed induction of innate immunity and phagocytotic pathways in presymptomatic SOD1-G93A mice expressing IL-10 + M3 or IL-10 alone. Further, while IL-10 expression increased microglial burden, the IL-10 + M3 group showed lower microglial burden, suggesting that M3 can successfully lower microgliosis before disease onset. Our data demonstrates that over-expression of an anti-inflammatory cytokine and a decoy chemokine receptor can modulate inflammatory processes in SOD1-G93A mice, modestly delaying the age to paralysis. This suggests that multiple inflammatory pathways can be targeted simultaneously in neurodegenerative disease and supports consideration of adapting these approaches to treatment of ALS and related disorders.
Funder
National Institutes of Health
Amytrophic Lateral Sclerosis Association
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献