Photocatalytic degradation of industrial acrylonitrile wastewater by F–S–Bi–TiO2 catalyst of ultrafine nanoparticles dispersed with SiO2 under natural sunlight

Author:

Ouyang Feng,Li Hanliang,Gong Zhengya,Pang Dandan,Qiu Lu,Wang Yun,Dai Fangwei,Cao Gang,Bharti Bandna

Abstract

AbstractHighly active photocatalyst, having certain anti-ionic interfering function, of F, S and Bi doped TiO2/SiO2 was used for the first time to degrade the organic pollutants in acrylonitrile industrial wastewater under natural sunlight. The photocatalyst were prepared and characterized by UV–Vis, XRD, TEM, EDS, Nitrogen physical adsorption and XPS technique. UV–Vis analysis revealed addition of F, S and Bi into the lattice of TiO2 led to the expansion of TiO2 response in the visible region and hence the efficient separation of charge carrier. The photocatalytic potential of as prepared catalyst to degrade acrylonitrile wastewater under simulated and natural sunlight irradiation was investigated. The extent of degradation of acrylonitrile wastewater was evaluated by chemical oxygen demand (CODCr). CODCr in wastewater decreased from 88.36 to 7.20 mgL−1 via 14 h irradiation of simulated sunlight and achieved regulation discharge by 6 h under natural sunlight, illuminating our photocatalyst effectiveness for refractory industrial wastewater treatment. From TEM results, we found that SiO2 could disperse the photocatalyst with different component distributions between the surface and the bulk phase that should also be responsible for the light absorption and excellent photocatalytic performance. The XPS analysis confirmed the presence of surface hydroxyl group, oxygen vacancies.

Funder

China Postdoctoral Science Foundation

Foundation Science and Technology innovation Committee of Shenzhen, PR China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3