Author:
Sahoo Satyaranjan,Pradhan Dhiren K.,Kumari Shalini,Samantaray Koyal Suman,Singh Charanjeet,Mishra Anupam,Rahaman Md. Mijanur,Behera Banarji,Kumar Ashok,Thomas Reji,Rack Philip D.,Pradhan Dillip K.
Abstract
AbstractFerroelectric materials exhibiting switchable and spontaneous polarization have strong potential to be utilized in various novel electronic devices. Solid solutions of different perovskite structures induce the coexistence of various phases and enhance the physical functionalities around the phase coexistence region. The construction of phase diagrams is important as they describe the material properties, which are linked to the underpinning physics determining the system. Here we present the phase diagram of (K0.5Na0.5NbO3)–(Ba0.5Sr0.5TiO3) (KNN-BST) system as a function of composition and their associated physical properties. Lead-free (1 − x)KNN–xBST (0 ≤ x ≤ 0.3) solid solution ceramics were synthesized by conventional solid-state reaction technique. The X-ray diffraction and Raman spectroscopic studies indicate composition-dependent structural phase transitions from an orthorhombic phase for x = 0 to orthorhombic + tetragonal dual-phase (for 0.025 ≤ x ≤ 0.15), then a tetragonal + cubic dual-phase (x = 0.2) and finally a cubic single phase for x ≥ 0.25 at room temperature (RT). Among these, the orthorhombic + tetragonal dual-phase system shows an enhanced value of the dielectric constant at room temperature. The phase transition temperatures, orthorhombic to tetragonal (TO-T) and tetragonal to cubic (TC), decrease with the increase in BST concentrations. The ferroelectric studies show a decrease of both 2Pr and EC values with a rise in BST concentration and x = 0.025 showed a maximum piezoelectric coefficient.
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献