Identification of EMT-associated prognostic features among grade II/III gliomas

Author:

Yang Wenyong,Lin Liangbin,Lu Tianqi,Yu Hui,Zhang Sunfu

Abstract

AbstractGrade II/III gliomas have a highly heterogeneous clinical course. Identifying prognostic biomarkers in grade II/III gliomas is essential to guide clinical management. We explored epithelial-mesenchymal transition (EMT)-related genes to uncover prognostic features in grade II/III gliomas. Consensus cluster analysis of 200 EMT-related genes classified 512 grade II/III glioma samples into two molecular subtypes, C1 and C2. The C1 subtype had significantly worse overall survival compared to the C2 subtype. Pathway analysis revealed C1 tumors were highly associated with tumor progression pathways and demonstrated higher immune cell infiltration scores. Differential expression analysis identified four genes (ACTN1, AQP1, LAMC3, NRM) that discriminated the two subtypes. Validation in external datasets confirmed that high expression of this four-gene signature predicted poor prognosis in grade II/III gliomas. Cellular experiments showed ACTN1, AQP1 and NRM promoted glioma cell proliferation, migration and invasion. We examined correlations of the signature genes with T cell exhaustion markers and found ACTN1 expression had the strongest association. Immunohistochemistry analysis further demonstrated that ACTN1 protein expression in grade II/III gliomas was negatively correlated with patient overall survival. In summary, our study identified a concise four-gene signature that robustly predicts grade II/III gliomas prognosis across multiple datasets. The signature provides clinical relevance in distinguishing more aggressive grade II/III glioma tumors. Targeting the ACTN1, AQP1 and NRM genes may offer new therapeutic opportunities to improve grade II/III gliomas patient outcomes.

Funder

Sichuan Science and Technology Department

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3