Synthesis, biofilm formation inhibitory, and inflammation inhibitory activities of new coumarin derivatives

Author:

Ahmed Ghada E.,Elshahid Zeinab A.,El-Sawy Eslam Reda,Abdel-Aziz Mohamed S.,Abdel-Aziem Anhar

Abstract

AbstractCoumarins are heterocycles of great interest in the development of valuable active structures in chemistry and biological domains. The ability of coumarins to inhibit biofilm formation of Gram positive bacterium (Staphylococcus aureus), Gram negative bacterium (Escherichia coli) as well as the methicillin-resistant S. aureus (MRSA) has been previously described. In the present work, new hybrid coumarin-heterocycles have been synthesized via the reaction of coumarin-6-sulfonyl chloride and 6-aminocoumarin with different small heterocycle moieties. The biological efficacy of the new compounds was evaluated towards their ability to inhibit biofilm formation and their anti-inflammatory properties. The antimicrobial activities of the newly synthesized compounds were tested against Gram positive bacterium (S. aureus ATCC 6538), Gram negative bacterium (E. coli ATCC 25922), yeast (Candida albicans ATCC 10231) and the fungus (Aspergillus niger NRRL-A326). Compounds 4d, 4e, 4f, 6a and 9 showed significant MIC and MBC values against S. aureus, E. coli, C. albicans, and methicillin-resistant S. aureus (MRSA) with especial incidence on compound 9 which surpasses all the other compounds giving MIC and MBC values of (4.88 and 9.76 µg/mL for S. aureus), (78.13 and 312.5 µg/mL for E. coli), (9.77 and 78.13 µg/mL for C. albicans), and (39.06 and 76.7 µg/mL for MRSA), respectively. With reference to the antibiofilm activity, compound 9 exhibited potent antibiofilm activity with IC50 of 60, 133.32, and 19.67 µg/mL against S. aureus, E. coli, and MRSA, (respectively) considering the reference drug (neomycin). Out of all studied compounds, the anti-inflammatory results indicated that compound 4d effectively inhibited nitric oxide production in lipopolysaccharide-(LPS-) stimulated RAW264.7 macrophage cells, giving NO% inhibition of 70% compared to Sulindac (55.2%)

Funder

STDF

Al-Azhar University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3