Impact of critical eddy diffusivity on seasonal bloom dynamics of Phytoplankton in a global set of aquatic environments

Author:

Mondal Arpita,Banerjee Sandip

Abstract

AbstractThe intensity of eddy diffusivity and the spatial average of water velocity at the depths of the water column in oceans and lakes play a fundamental role in phytoplankton production and phytoplankton and zooplankton biomass, and community composition. The critical depth and intensity of turbulent mixing within the water column profoundly affect phytoplankton biomass, which depends on the sinking characteristic of planktonic algal species. We propose an Nutrient-Phytoplankton-Zooplankton (NPZ) model in 3D space with light and nutrient-limited growth in a micro-scale ecological study. To incorporate micro-scale observation of phytoplankton intermittency in bloom mechanism in stationary as well as oceanic turbulent flows, a moment closure method has been applied in this study. Experimental observations imply that an increase in turbulence is sometimes ecologically advantageous for non-motile planktonic algae. How do we ensure whether there will be a bloom cycle or whether there can be any bloom at all when the existing phytoplankton group is buoyant, heavier, motile, or non-motile? To address these questions, we have explored the effects of critical depth, the intensity of eddy diffusivity, spatial average of water velocity, on the concentration as well as horizontal and vertical distribution of phytoplankton and zooplankton biomass using a mathematical model and moment closure technique. We quantify a critical threshold value of eddy diffusivity and the spatial average of water velocity and observe the corresponding changes in the phytoplankton bloom dynamics. Our results highlight the importance of eddy diffusivity and the spatial average of water velocity on seasonal bloom dynamics and also mimic different real-life bloom scenarios in Mikawa Bay (Japan), Tokyo Bay (Japan), Arakawa River (Japan), the Baltic Sea, the North Atlantic Ocean, Gulf Alaska, the North Arabian Sea, the Cantabrian Sea, Lake Nieuwe Meer (Netherlands) and several shallower lakes.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3