Author:
Mondal Arpita,Banerjee Sandip
Abstract
AbstractThe intensity of eddy diffusivity and the spatial average of water velocity at the depths of the water column in oceans and lakes play a fundamental role in phytoplankton production and phytoplankton and zooplankton biomass, and community composition. The critical depth and intensity of turbulent mixing within the water column profoundly affect phytoplankton biomass, which depends on the sinking characteristic of planktonic algal species. We propose an Nutrient-Phytoplankton-Zooplankton (NPZ) model in 3D space with light and nutrient-limited growth in a micro-scale ecological study. To incorporate micro-scale observation of phytoplankton intermittency in bloom mechanism in stationary as well as oceanic turbulent flows, a moment closure method has been applied in this study. Experimental observations imply that an increase in turbulence is sometimes ecologically advantageous for non-motile planktonic algae. How do we ensure whether there will be a bloom cycle or whether there can be any bloom at all when the existing phytoplankton group is buoyant, heavier, motile, or non-motile? To address these questions, we have explored the effects of critical depth, the intensity of eddy diffusivity, spatial average of water velocity, on the concentration as well as horizontal and vertical distribution of phytoplankton and zooplankton biomass using a mathematical model and moment closure technique. We quantify a critical threshold value of eddy diffusivity and the spatial average of water velocity and observe the corresponding changes in the phytoplankton bloom dynamics. Our results highlight the importance of eddy diffusivity and the spatial average of water velocity on seasonal bloom dynamics and also mimic different real-life bloom scenarios in Mikawa Bay (Japan), Tokyo Bay (Japan), Arakawa River (Japan), the Baltic Sea, the North Atlantic Ocean, Gulf Alaska, the North Arabian Sea, the Cantabrian Sea, Lake Nieuwe Meer (Netherlands) and several shallower lakes.
Funder
Department of Science and Technology, Ministry of Science and Technology, India
Science and Engineering Research Board
Publisher
Springer Science and Business Media LLC