Distribution of energy in the ideal gas that lacks equipartition

Author:

Naplekov Dmitry M.,Yanovsky Vladimir V.

Abstract

AbstractThe energy and velocity distributions of ideal gas particles were first obtained by Boltzmann and Maxwell in the second half of the nineteenth century. In the case of a finite number of particles, the particle energy distribution was obtained by Boltzmann in 1868. However, it appears that this distribution is not valid for all vessels. A round vessel is a special case due to the additional integral of motion, the conservation of the gas angular momentum. This paper is intended to fill this gap, it provides the exact distribution of particle energy for a classical non-rotating ideal gas of a finite number of colliding particles in a round vessel. This previously unknown distribution was obtained analytically from the first principles, it includes the dependence on all the particle masses. The exact mean energies of gas particles are also found to depend on the system parameters, i.e., the distribution of energy over the degrees of freedom is not uniform. Therefore, the usual ideal gas model allows for the uneven energy partitioning, which we study here both theoretically and in simple numerical experiments.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference28 articles.

1. Gibbs, J. W. Elementary Principles in Statistical Mechanics (Courier Corporation, 2014).

2. Brush, S. G. The Kinetic Theory of Gases, an Anthology of Classic Papers with Historical Commentary (Imperial College Press, 2003).

3. Kubo, R., Ichimura, H., Usui, T. & Hashitsume, N. Statistical Mechanics (North-Holland, 1990)

4. Khinchin, A. I. Mathematical Foundations of Statistical Mechanics (Dover, 1949).

5. Maxwell, J. C. Illustrations of The Dynamical Theory of Gases. The Scientific Papers of James Clerk Maxwell (Dover, 2003).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3