Comparative studies on population genetic structure of two closely related selfing and outcrossing Zingiber species in Hainan Island

Author:

Huang Rong,Chu Qing-Hua,Lu Guo-Hui,Wang Ying-QiangORCID

Abstract

AbstractHow mating system impacts the genetic diversity of plants has long fascinated and puzzled evolutionary biologists. Numerous studies have shown that self-fertilising plants have less genetic diversity at both the population and species levels than outcrossers. However, the phylogenetic relationships between species and correlated ecological traits have not been accounted for in these previous studies. Here, we conduct a comparative population genetic study of two closely related selfing and outcrossing Zingiber species, with sympatric distribution in Hainan Island, and obtain a result contrary to previous studies. The results indicate that selfing Z. corallinum can maintain high genetic diversity through differentiation intensified by local adaptation in populations across the species’ range. In contrast, outcrossing Z. nudicarpum preserves high genetic diversity through gene exchange by frequent export of pollen within or among populations. Contrary to expectations, the major portion of genetic variation of outcrossing Z. nudicarpum may exist among populations, depending on the dispersal ability of pollen and seed. Our results also reveal that the main factor affecting population structure of selfing Z. corallinum is mountain ranges, followed by a moist climate, while that of outcrossing Z. nudicarpum is likely moisture, but not mountain ranges, due to gene flow via pollen.

Funder

the Joint Fund of National Natural Science Foundation of China and Guangdong Provincial Government

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3