Novel plasma biomarkers improve discrimination of metabolic health independent of weight

Author:

Ellison Stephen,Abdulrahim Jawan W.,Kwee Lydia Coulter,Bihlmeyer Nathan A.,Pagidipati Neha,McGarrah Robert,Bain James R.,Kraus William E.,Shah Svati H.

Abstract

AbstractWe sought to determine if novel plasma biomarkers improve traditionally defined metabolic health (MH) in predicting risk of cardiovascular disease (CVD) events irrespective of weight. Poor MH was defined in CATHGEN biorepository participants (n > 9300), a follow-up cohort (> 5600 days) comprising participants undergoing evaluation for possible ischemic heart disease. Lipoprotein subparticles, lipoprotein-insulin resistance (LP-IR), and GlycA were measured using NMR spectroscopy (n = 8385), while acylcarnitines and amino acids were measured using flow-injection, tandem mass spectrometry (n = 3592). Multivariable Cox proportional hazards models determined association of poor MH and plasma biomarkers with time-to-all-cause mortality or incident myocardial infarction. Low-density lipoprotein particle size and high-density lipoprotein, small and medium particle size (HMSP), GlycA, LP-IR, short-chain dicarboxylacylcarnitines (SCDA), and branched-chain amino acid plasma biomarkers were independently associated with CVD events after adjustment for traditionally defined MH in the overall cohort (p = 3.3 × 10−4–3.6 × 10−123), as well as within most of the individual BMI categories (p = 8.1 × 10−3–1.4 × 10−49). LP-IR, GlycA, HMSP, and SCDA improved metrics of model fit analyses beyond that of traditionally defined MH. We found that LP-IR, GlycA, HMSP, and SCDA improve traditionally defined MH models in prediction of adverse CVD events irrespective of BMI.

Funder

National Institutes of Health

American Heart Association

National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3