Feasibility between Bifidobacteria Targeting and Changes in the Acoustic Environment of tumor Tissue for Synergistic HIFU

Author:

Xu Die,Zou Wenjuan,Luo Yong,Gao Xuan,Jiang Binglei,Wang Yaotai,Jiang Fujie,Xiong Jie,Chen Chun,Tang Yu,Qiao Hai,Li Huanan,Zou Jianzhong

Abstract

AbstractHigh intensity focused ultrasound (HIFU) has been recently shown as a rapidly developing new technique for non-invasive ablation of local tumors whose therapeutic efficiency can be significantly improved by changing the tissue acoustic environment (AET). Currently, the method of changing AET is mainly to introduce a medium with high acoustic impedance, but there are some disadvantages such as low retention of the introduced medium in the target area and a short residence time during the process. In our strategy, anaerobic bacterium Bifidobacterium longum (B. longum) which can colonize selectively in hypoxic regions of the animal body was successfully localized and shown to proliferate in the hypoxic zone of tumor tissue, overcoming the above disadvantages. This study aimed to explore the effects of Bifidobacteria on AET (including the structure and acoustic properties of tumor tissues) and HIFU ablation at different time. The results show that the injection of Bifidobacteria increased the collagen fibre number, elastic modulus and sound velocity and decreased neovascularization in tumor tissues. The number of collagen fibres and neovascularization decreased significantly over time. Under the same HIFU irradiation intensity, the B. longum injection increased the coagulative necrosis volume and decreased the energy efficiency factor (EEF). This study confirmed that Bifidobacteria can change the AET and increase the deposition of ultrasonic energy and thereby the efficiency of HIFU. In addition, the time that Bifidobacteria stay in the tumor area after injection is an important factor. This research provides a novel approach for synergistic biologically targeted HIFU therapy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3